Description

Predictive analytics is the branch of the advanced analytics which is used to make predictions about unknown future events. Predictive analytics uses many techniques from data mining, statistics, modelling, machine learning, and artificial intelligence to analyse current data to make predictions about future.

One class of Predictive Analytics is to make prediction on Time Series Data. Studying historical data, collected over a period of time, can help in building models using which future can be predicted. For example, from historical data on Temperatures in a City, we can make decent predictions of what the Temperature could be in a future date. Or for that matter, from data collected over a reasonably long period of time regarding various life style aspects of a Diabetic patient, we can predict what should be the volume of Insulin to inject on a given date in future. One example to consider from the Business world could be to predict the Volume of In-Roamers in a Telecom Network in any given period of time in the future from the historical details of In-Roamers in the Network.

The applications are just innumerable as these are applicable in every sphere of business and life.

In this course, we go through various aspects of building Predictive Analytics Models. We start with simple techniques and gradually study very advanced and contemporary techniques. We cover using Descriptive Statistics, Moving Averages, Regressions, Machine Learning and Neural Networks.

This course is a series of 3 parts.

In Part 1, we use Excel to make Numerical Predictions from Time Series Data.

We start by using Excel for 2 reasons.

Excel is easy use and thus we can understand complex concepts through exercises that are easy to replicate and thus become easy to understand.

Excel is expected to be available with everyone taking this course.

In Part 2, we use R Programming to make Numerical Predictions from Time Series Data.

In Part 3, we use Python Programming to make Numerical Predictions from Time Series Data.

The course uses simple data sets to explain the concepts and the theory aspects. As we go through the various techniques, we compare the various techniques. We also understand the circumstances where a particular technique should be applied. We will also use some publicly available data sets to apply the techniques that we will discuss in the course.

From time to time, we will add bonus videos of our real time work on industrial data on which we will apply the Predictive Analytics techniques to create Models for making predictions.

Basic knowledge

Basic Knowledge of Statistics

Basic Knowledge of Algebra

Basic Knowledge of Logarithm

Basic Knowledge of Excel

Predictive analytics is the branch of the advanced analytics which is used to make predictions about unknown future events. Predictive analytics uses many techniques from data mining, statistics, modelling, machine learning, and artificial intelligence to analyse current data to make predictions about future.

One class of Predictive Analytics is to make prediction on Time Series Data. Studying historical data, collected over a period of time, can help in building models using which future can be predicted. For example, from historical data on Temperatures in a City, we can make decent predictions of what the Temperature could be in a future date. Or for that matter, from data collected over a reasonably long period of time regarding various life style aspects of a Diabetic patient, we can predict what should be the volume of Insulin to inject on a given date in future. One example to consider from the Business world could be to predict the Volume of In-Roamers in a Telecom Network in any given period of time in the future from the historical details of In-Roamers in the Network.

The applications are just innumerable as these are applicable in every sphere of business and life.

In this course, we go through various aspects of building Predictive Analytics Models. We start with simple techniques and gradually study very advanced and contemporary techniques. We cover using Descriptive Statistics, Moving Averages, Regressions, Machine Learning and Neural Networks.

This course is a series of 3 parts.

In Part 1, we use Excel to make Numerical Predictions from Time Series Data.

We start by using Excel for 2 reasons.

Excel is easy use and thus we can understand complex concepts through exercises that are easy to replicate and thus become easy to understand.

Excel is expected to be available with everyone taking this course.

In Part 2, we use R Programming to make Numerical Predictions from Time Series Data.

In Part 3, we use Python Programming to make Numerical Predictions from Time Series Data.

The course uses simple data sets to explain the concepts and the theory aspects. As we go through the various techniques, we compare the various techniques. We also understand the circumstances where a particular technique should be applied. We will also use some publicly available data sets to apply the techniques that we will discuss in the course.

From time to time, we will add bonus videos of our real time work on industrial data on which we will apply the Predictive Analytics techniques to create Models for making predictions.

Basic knowledge

Basic Knowledge of Statistics

Basic Knowledge of Algebra

Basic Knowledge of Logarithm

Basic Knowledge of Excel

Basic Knowledge of Statistics

Basic Knowledge of Algebra

Basic Knowledge of Logarithm

Basic Knowledge of Excel

Basic Knowledge of Algebra

Basic Knowledge of Logarithm

Basic Knowledge of Excel

What will you learn

Predicting using Descriptive Statistics, Moving Averages, Centred Moving Averages, Weighted Moving Averages

Predicting using Linear Regression

Predicting using Exponential Regression

Predicting using Power Regression

Predicting using Logarithmic Regression

Predicting using Polynomial Regression

Using Excel to make Predictions

Using Data Analysis Tool Pak from Excel

Using LINEST(), LOGEST(), GROWTH(), TREND() functions in Excel

Predicting using Descriptive Statistics, Moving Averages, Centred Moving Averages, Weighted Moving Averages

Predicting using Linear Regression

Predicting using Exponential Regression

Predicting using Power Regression

Predicting using Logarithmic Regression

Predicting using Polynomial Regression

Using Excel to make Predictions

Using Data Analysis Tool Pak from Excel

Using LINEST(), LOGEST(), GROWTH(), TREND() functions in Excel

Students

Research Scholars

Developers curious about Data Sciences

Learners curious about Predictive Analytics

Executives

Managers

Research Scholars

Developers curious about Data Sciences

Learners curious about Predictive Analytics

Executives

Managers

• Lifetime Access to Each Course

• Certificate on Completion of Course

• No Extra Charges Or Admin Fees

• Easy Access to Courses

• High Priority Support After Sales.

• Big Discounts on Individual Courses

• Certificate on Completion of Course

• No Extra Charges Or Admin Fees

• Easy Access to Courses

• High Priority Support After Sales.

• Big Discounts on Individual Courses

Find various Data Analyst courses including a diploma in data analytics

Adult education is the non-credential activity of gaining skills and improved education.

Online education is electronically supported learning that relies on the Internet for teacher/student interaction.

A short course is a learning programme that gives you combined content or specific skills training in a short period of time. Short courses often lean towards the more practical side of things and have less theory than a university course – this gives you a more hands-on experience within your field of interest.

Course duration is 24 hours.